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1. Introduction

There has been a long history of interplay between differential geometry and supersymmet-

ric non-linear sigma models starting with the observation that N = 2 supersymmetry in

two dimensions requires the sigma model target space to be a Kähler manifold [1]. It was

first pointed out in [2] that one could construct conserved currents in (1, 1) sigma models

given a covariantly constant form on the target space, and in [3] it was shown that the

(1, 1) model on a Calabi-Yau three-fold has an extended superconformal algebra involving

precisely such a current constructed from the holomorphic three-form. In [4] symmetries

of this type were studied systematically in the classical sigma model setting; each mani-

fold on Berger’s list of irreducible non-symmetric Riemannian manifolds has one or more

covariantly constant forms which give rise to conserved currents and the corresponding

Poisson bracket algebras are non-linear, i.e. they are of W-symmetry type. Subsequently

the properties of these algebras were studied more abstractly in a conformal field theory

framework [5, 6] and more recently in topological models [7].

In this paper we revisit the symmetries of classical (1,1) supersymmetric non-linear

sigma models with target spaces which admit torsion-free connections with special holon-

omy groups. The structure of the classical Poisson bracket algebra of currents associated

with the covariantly constant forms and the supercurrent is investigated and it is shown

that, in most cases, it can be linearised by the inclusion of a finite number of composite

currents. The exceptional cases are SU(3) and G2, possibly the two cases of most interest

in string theory. In these cases derivatives of the original currents are generated and the

presence of these suggests that finite linearisations may not be possible.

The main motivation for studying these symmetries is as a preparation for trying to

gain a better understanding of them at the quantum level. Such an understanding may

be of use in the study of higher-order corrections in string theory in the sigma model

context [8 – 10], a topic which has recently received renewed attention from the point of

view of spacetime supersymmetry [11].
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Since the symmetry transformations associated with covariantly constant forms of

degree greater or equal to three are non-linear, even for a flat target space, one might

anticipate that BRST techniques would be necessary in their analysis, and since the alge-

bras only close in a field-dependent way one would also expect that the BV version might

be helpful. The idea would be to use these techniques in the context of the algebraic

renormalisation programme [12] in order to study possible anomalies in a cohomological

framework [13]. However, it turns out that this formalism is not sufficient to deal with the

problems we are mainly interested in, namely the sigma model either by itself or in the

presence of external gauge fields. This motivates the search for linearised extensions of the

classical special holonomy W-algebras.

The symmetry transformations associated with covariantly constant forms have the

property that their parameters are chiral in the sense that they depend on half of the

worldsheet superspace coordinates (see (2.4)). The BRST transformation of the matter

field Xi is,1

sXi = cARA
i(X) (1.1)

where cA are the parameter ghosts. In order that the BRST operator s is nilpotent on Xi

we would like the transformation of the ghosts to take the standard form

scA =
1

2
cC cB fBC

A(X ) , (1.2)

where fBC
A(X) are the field-dependent structure functions defined by [RB , RC ]=fBC

ARA,

the RAs being regarded as vector fields on the space of sigma model fields. However, this is

not consistent because one is transforming chiral objects into non-chiral ones. The structure

functions depend on the currents and are only chiral on-shell. This then prevents one from

writing down a classical master equation in the chiral, or superconformal, theory.

One can circumvent this problem by gauging the algebra in which case the ghosts are

no longer taken to be chiral. In the context of a d = 2 superconformally invariant action

S0(X), for a single chiral sector,2 this involves the modification of the original action S0 by

S0(X) → S0(X) + hAjA(X) , (1.3)

where jA are the conserved currents, and the gauge fields hA are required to transform as

shA = D−cA + hCcBfBC
A(X) . (1.4)

Two further problems now present themselves. The first is that the algebra of transfor-

mations may fail to close on the gauge fields and the ghosts due to relations between the

currents which show up in the Jacobi identities. This is discussed in more detail in section

4. Even when this is not a problem the BRST transformations (1.1), (1.2), (1.4) involve

the background fields, cA and hA, transforming into expressions containing quantum fields.

It is possible to construct a solution to the classical master equation, but the naive Ward

1The deWitt notation is being used temporarily, with repeated indices implying integration as well as

summation over labels. See for example [14].
2For both sectors the gauging procedure is more complicated - see [15, 16].
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identities involve insertions of composite operators [17]. It is not known how to analyse

anomalies using cohomological techniques in this situation and it is therefore difficult, if not

impossible, to carry through the algebraic renormalisation programme order by order in

perturbation theory. On the other hand, a perturbative evaluation of the explicit non-local

expressions involving composite operators is hopelessly difficult in the context of a generic

special holonomy sigma model.

As far as we have been able to ascertain there seems to be no way out of this apart

from linearisation. For the cases where we can establish finite linearisations at the classical

level it should be possible to analyse the renormalisation of the symmetries of the effective

action itself in perturbation theory. We discuss this further in the final section. How-

ever, we note that in order to analyse anomalies in the current algebra, or in the operator

product expansion, sources for the currents need to be introduced which implies that the

gauging (1.3) is necessary. So even though writing down OPE expressions involving com-

posite currents is commonplace in the abstract CFT, for special holonomy sigma models it

seems that the OPE can really only be understood explicitly in pertubative renormalisation

theory if the algebra can be linearised. Moreover, as we shall discuss later, some of the

finite linearisations turn out to be unstable in the quantum theory due to the fact that

operators which do not appear in the classical Poisson bracket algebra can be generated

by the OPE.

2. Review of basics

The action for a (1, 1)-supersymmetric sigma model without boundary is

S =

∫
dz gijD+XiD−Xj , (2.1)

where gij is a Riemannian metric on the n-dimensional target space M . Xi, i = 1, . . . n, is

the sigma model field represented in some local chart for M and z denotes the coordinates

of (1, 1) superspace Σ. We shall use a light-cone basis so that z = (x++, x−−, θ+, θ−),

with x++ = x0 + x1, x−− = x0 − x1. D+ and D− are the usual flat superspace covariant

derivatives which obey the relations

D2
+ = i∂++; D2

− = i∂−−; {D+,D−} = 0 . (2.2)

We use the convention that ∂++x++ = 1. We shall take the superspace measure to be

dz := d2xD+D− (2.3)

with the understanding that the superfield obtained after integrating over the odd variables

(i.e after applying D+D− to the integrand) is to be evaluated at θ = 0.

The action (2.1) is invariant under superconformal transformations which act indepen-

dently on the left (+) and right (-) light-cone sectors. In the left sector, a superconformal

transformation takes the form

δXi = 2a−−∂++Xi − iD+a−−D+Xi , (2.4)

– 3 –
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where the parameter a−− is chiral, D−a−− = 0. The corresponding supercurrent is the

energy-momentum tensor

T+3 := gij∂++XiD+Xj , (2.5)

The current is conserved in the sense that D−T+3 = 0 on-shell. Similarly, there is a

conserved energy-momentum tensor T−3 in the right sector.

We shall say that the target space has special holonomy if there are one or more

covariantly constant forms which reduce the corresponding holonomy groups from SO(n) to

groups G on Berger’s list. These are: U(m) and SU(m) for n = 2m; Sp(k) and Sp(k) ·Sp(1)

for n = 4k; G2 and Spin(7).

Let L be a vector-valued l-form such that the l+1-form obtained by lowering the vector

index (taken to be in the first slot) is covariantly constant; this form will also be denoted

L. (It should be clear from the context which is meant). The symmetry transformation

associated with L is

δLXi = aLLi
LD+XL (2.6)

where the parameter aL has Lorentz weight −l and Grassmann parity (−1)l and the multi-

index L denotes l antisymmetrised indices, L := [l1 . . . ll]. We shall use the notation L2 to

denote antisymmetrisation over the l − 1 indices beginning with l2, and so on. Under a

general variation of the field X the change in the action is

δS =

∫
dz 2gijδX

i∇−D+Xj

= −

∫
dz 2gijδX

igij∇+D−Xj . (2.7)

If we substitute (2.6) into the top line of (2.7) we see that δS = 0 provided that the

parameter is chiral, D−aL = 0. The corresponding conserved current will also be denoted

by L; it satisfies D−L = 0 on-shell and is given by

L =
1

l + 1
LiLD+XiL . (2.8)

In order to evaluate the commutator, of two such transformations one needs some algebraic

relations which can be proved for any special holonomy forms. If we set

(L · M)iL2,jM2
:= LkiL2

Mk
jM2

, (2.9)

then one can verify that

(L · M)i[L2,jM2] = (−1)l+1PijL2M2
+

m

2
gi[jQL2M2] ,

(L · M)[jL2,|i|M2] = (−1)lPijL2M2
+

l

2
gi[jQL2M2] ,

(L · M)i[L2,|j|M2] + (i ↔ j) = gijQL2M2
− (l + m − 2)g(i[l2Qj)L3M2] . (2.10)

The tensors P and Q are totally antisymmetric and covariantly constant; in particular cases

they can vanish. Both of them can be used to define L-type symmetry transformations,
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but in the commutator of two special holonomy transformations, [δL, δM ], Q is combined

with the energy-momentum tensor. After some algebra one finds that

[δL, δM ]Xi = δP Xi + δKXi , (2.11)

where each term is now a symmetry by itself. The P transformation, which is of standard

L-type has parameter aP given by

aP = (−1)l+1maMDaL − (−1)mlDaMaL . (2.12)

The K transformation is defined as follows. If we set

Ki,K := gi[k1
QK2] , (2.13)

where the multi-index K takes on l + m− 1 values, then it is not difficult to show (for any

covariantly constant antisymmetric tensor Q) that

δKXi =
l + m − 1

l + m − 2

(
aKK i

j K2
∂++XjD+XK2 +

i(−1)k

k
Ki

K∇+(aKD+XK)
)

(2.14)

is a symmetry of the action (2.1). In fact, the corresponding conserved quantity is the

composite current TQ. For the case in hand the parameter aK is

aK = i(−1)l+1 lm(l + m − 2)

2
aMaL . (2.15)

3. Poisson bracket algebras

In this section we re-examine the algebra of symmetry transformations for the torsion-

free model. The idea is to try to linearise the W-type algebraic structure by treating any

composite currents as new independent generators. We shall see that for SU(m),m ≥ 4,

Sp(k) ·Sp(1) and for Spin(7) it turns out to be rather simple to do this by including a small

number of extra generators. Since the Sp(k) case is linear anyway (N = 4 superconformal

symmetry), this only leaves two cases which cannot be linearised straightforwardly, namely

SU(3) and G2. The problem here is that derivatives of the original currents turn up and

this interferes with the finiteness which is otherwise due to the fact that differential forms

only have finite degree.

The subject is best studied using Poisson brackets; these were introduced in [4]. These

brackets are based on the observation that (1, 1) superspace factorises, Σ = Σ(+)×Σ(−), so

that we can view z(−) := (x−−, θ−) ∈ Σ(−) as the super-time, while the other coordinates

z(+) := (x++, θ+) ∈ Σ(+) are spatial coordinates on which the fields depend. On-shell the

currents depend only on the latter as they are conserved in super-time. In the following

discussion the minus coordinates are irrelevant, so that we can drop the pluses from the

formulae without loss of clarity. In this section, therefore, D will denote D+ while ∂ denotes

∂++, with D2 = i∂.

The basic Poisson bracket (PB) is

(DXi(1),DXj(2)) = gij∇1δ12 (3.1)
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where (1, 2) refer to two different points in Σ(+), ∇ = ∇+ and δ12 is the delta-function in

Σ(+) which, as there is only one odd coordinate, is Grassmann odd. As all of the tensors

appearing in the currents are covariantly constant, the covariant derivative in the basic PB

can be replaced by the ordinary derivative, and the tensors can be regarded as constants.

With this being understood one can write (3.1) and its corollaries as

(DXi(1),DXj(2)) = gijD1δ12

(∂Xi(1),DXj(2)) = gij∂1δ12

(DXi(1), ∂Xj(2)) = −gij∂1δ12

(∂Xi(1), ∂Xj(2)) = igij∂1D1δ12 . (3.2)

In the following we shall write j(a) to mean a smeared current. For each current the

parameter a has the opposite Grassmann parity, so we have

j(a) =

∫
dz j(z)a(z) =

∫
dz a(z)j(z) , (3.3)

where z now denotes z(+). For any three currents A,B,C and parameters f, g we have

(A(f), BC(g)) = (A(f), B(Cg)) + (−1)BC(A(f), C(Bg))

(AB(f), C(g)) = (B(fA), C(g)) + (−1)AB(A(fB), C(g)) . (3.4)

three basic PBs are the superconformal algebra,

(T (a), T (b)) = T (2(∂ab − a∂b) + iDaDb) , (3.5)

the PB of the supercurrent with an L-current L,

(T (a), L(b)) = L(l∂ab − 2a∂b + iDaDb) , (3.6)

and the PB of two currents, L, M ,

(L(aL),M(aM )) = −P (aP ) − TQ(aK) , (3.7)

where aP and aK are defined in (2.12)and (2.15) respectively. The programme now is to

compute the PBs of the composite TQ with all of the other currents including itself. It is

easier to do this explicitly case by case (recall that dim M = n).

G = U(m); n = 2m. When G = U(m) there is one extra current associated with the

complex structure J and the algebra is just the N = 2 superconformal algebra. In the

present notation this is, in addition to the N = 1 PB (T, T ),

(T (a), J(b)) = J(∂ab − 2a∂b + iDaDb) ,

(J(a), J(b)) = −iT (ab) , (3.8)
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where the current is J = 1
2JijDXij . The pair (J, T ) together make up the N = 2 supercur-

rent which can be viewed as a real N = 2 superfield. There are further N = 2 multiplets

given by pairs of the form (Jp, TJp−1). The PB algebra generated by these currents closes,

(Jp(a), Jq(b)) = −ipqTJp+q−2(ab)

(TJp(a), Jq(b)) =
Jp+q

p + q
(q(2q − 1)∂ab − 2q(p + 1)a∂b + iqDaDb)

(TJp(a), TJq(b)) = TJp+q((2q + 2)∂ab − (2p + 2)a∂b + iDaDb) . (3.9)

G = Sp(k); n = 4k. When G = Sp(k), so that M is a hyperKähler manifold, we have

three complex structures {Jr}, r = 1, 2, 3 giving rise to the N = 4 superconformal algebra

with

(Jr(a), Js(b)) = −iδrsT (ab) + εrstJt(Dab + aDb) . (3.10)

G = Sp(k) · Sp(1); n = 4k. The holonomy groups Sp(k) · Sp(1), which correspond

to quaternionic Kähler geometries in 4k dimensions, give rise to W-type algebras which

admit finite linearisations. There is a set of three complex structures {Jr} but they are not

globally defined on the target space. This means that one cannot define three additional

supercurrents. However, there is a covariantly constant four-form ωL = ωr ∧ ωr, where

ωr is the local two-form corresponding to Jr. This gives rise to an L-type symmetry and

hence we have an N = 1 superconformal algebra extended by this current. The full set of

currents is given by {Lp, TLq; p = 1, . . . k; q = 1 . . . k − 1}.

The PB of two L-currents is

(L(a), L(b)) = −4iTL(ab) . (3.11)

Using this result and the PB of T with L one can verify straightforwardly that

(Lp(a), Lq(b)) = −4ipqTLp+q−1(ab)

(TLp(a), Lq(b)) =
Lp+q

p + q
(q(4q − 1)∂ab − 2q(2p + 1)a∂b + iqDaDb)

(TL(a), TL(b)) = TLp+q((4q + 2)∂ab − (4p + 2a∂b + iDaDb) . (3.12)

G = SU(m); n = 2m. When the holonomy group is SU(m),m ≥ 3 the target space

is a Calabi-Yau manifold. As well as a complex structure there is a covariantly constant

(m, 0)-form Ω. We shall work with L and L̂ which are respectively the real and imaginary

parts of Ω. So the generating set of currents is {T, J, L, L̂}, and we shall set m = l + 1

to be in line with our previous conventions. T and J generate an N = 2 superconformal

algebra and the pair {L, L̂} transform as a chiral N = 2 superconformal field,

(J(a), L(b)) = L̂(lDab + aDb)

(J(a), L̂(b)) = −L(lDab + aDb) . (3.13)

For m even the PBs for the Ls are

(L(a), L(b)) = −ill!TJ l−1(ab)

(L̂(a), L̂(b)) = −ill!TJ l−1(ab)

(L̂(a), L(b)) = l!J l−1(Dab + aDb) , (3.14)
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while for m odd they are

(L(a), L(b)) = l!J l−1(Dab − aDb)

(L̂(a), L̂(b)) = l!J l−1(Dab − aDb)

(L̂(a), L(b)) = −ill!TJ l−1(ab) . (3.15)

In both cases the new currents at this level are K := TJm−2 and M := Jm−1. As

noted above this pair forms an N = 2 supermultiplet of lowest spin l. From (3.9) we can

see that these currents have vanishing PBs with themselves unless m = 3 in which case

(TJ, J2) ∼ J3. Moreover, the commutators of powers of J and their products with T with

L and L̂ are mostly zero. One has

(Jp(a), L(b)) = −2iδp2TL(ab) , (3.16)

which comes about using the fact that

JL = 0 , (3.17)

as ω is a (1,1) form while ωL is the sum of (m, 0) and (0,m) parts, and

(TJp(a), L(b)) = δp1(∂JL + DTL̂)(lab) − T L̂(aDb) . (3.18)

In order to show this one has to use the identity

DJL = iT L̂ . (3.19)

We therefore see that only TJ and J2 have non-trivial PBs with L and L̂, and J2 only

produces J3. At the classical level, this pair is only generated for m = 3 and so we conclude

that SU(m) holonomy algebras have finite linearisations for m ≥ 4. For m = 3, however,

there is a new operator which involves a derivative.

Spin(7). The Spin(7) case is similar to Sp(k) · Sp(1). This is an N = 1 superconformal

algebra extended by a superfield current L of weight 2. The invariant form is the self-

dual four-form Φ. The Poisson bracket of L with itself gives rise to the composite current

K = TL, and the PB of this with L gives L2 which is simply the current associated with

the volume form. The new composites are superconformal fields and have vanishing PBs

with L and each other. Explicitly we have

(T (a), L(b)) = L(3∂ab − 2a∂b + iDaDb)

(L(a), L(b)) = 9iTL(Dab)

(L(a), TL(b)) = L2(3∂ab
3

2
a∂b −

i

2
DaDb)

(L(a), L2(b)) = 0

(TL(a), L2(b)) = 0 . (3.20)

This result depends only on the algebraic relations T 2 = L3 = TL2 = 0. In fact, this

algebra differs from the Sp(2) · Sp(1) algebra only in the coefficients.
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G2. The other exceptional special holonomy group is G2 in seven dimensions. This has

an invariant three-form ϕ and its dual is an invariant four-form; they can be combined

to give the Spin(7) four-form Φ. However, in this case the PB algebra generated by T ,

L (corresponding to ϕ) and M (corresponding to ∗ϕ) leads to derivatives of the original

currents and we are unable to conclude that there is a finite linearisation. In more detail,

the basic PBs of the weight 3/2 and 2 currents L and M are

(L(a), L(b)) = 2M(Dab − aDb)

(L(a),M(b)) = −18iTL(ab)

(M(a),M(b)) = −24iTM(ab) . (3.21)

The PBs of L,M with TL, TM then give

(L(a), TL(b)) = TM(
2

3
Dab − 2aDb) + 2(∂LL + DTM)(ab)

(L(a), TM(b)) =
3

7
LM(6∂ab − 2a∂b + iDaDb)

(M(a), TL(b)) = 0

(M(a), TM(b)) = 0 . (3.22)

To show these it is necessary to make use of the obvious algebraic identities, such as L2 = 0,

as well as the less obvious ones

DLL =
4i

3
TM

LDM = −
4

7
D(LM); DLM =

3

7
D(LM)

L∂M =
4

7
∂(LM); ∂LM =

3

7
∂(LM) (3.23)

The PBs of the bilnears are

(TL(a), TL(b)) = −T (7∂LL +
8

3
DTM)(ab)

(TL, TM) = (TM,TM) = (TL,LM) = (TM,LM) = (LM,LM) = 0 . (3.24)

After a little algebra one can show that the derivative operator in (L, TL) can be

replaced by A which is defined to be the primary part of DLL + 2
3DTM , i.e. it transforms

as a primary of weight 7
2 under superconformal transformations and that the right-hand

side of (TL, TL) is proportional to TA. To this level, we therefore find that the only non-

algebraic operator that occurs is A together with TA. Unfortunately, the algebra does not

close on this set and higher derivative operators are generated. It seems highly unlikely

that there is a finite linearisation in this case, or for CY3 which is similar in structure.

4. Jacobi identities for W-algebras

In the BRST/BV language the Jacobi identities (JIs) for the commutator are written as

ZARA
i := cDcCcB

(
fBC

EfED
A − RB

j∂jfCD
A
)
RA

i = 0 . (4.1)
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If ZA does not vanish, the JIs imply relations between the generators. This can also be

seen in the JIs for the Poisson bracket. Given a particular field-dependent algebra one can

think of these as abstract relations which hold independently of a particular representation.

In this section we investigate the reducibility relations that occur for special holon-

omy W-algebras. We will show that when ZA is not zero for the gauged chiral algebras

(see (1.3)), it is not possible to solve the classical master equation without introducing

further ghosts.

As noted in the introduction, linearisation is necessary to analyse current algebras in

an interacting CFT. For linearised algebras ZA vanishes, but this new obstruction to be

discussed here may be of interest in special circumstances when the composite operator

expressions can be evaluated more easily, or in the context of W-strings, when all the

currents are imposed as constraints and the hAs are treated as quantum fields.

The part of the master equation linear in the ghost antifields, c∗A, contains the term

c∗AZA, so if ZA does not vanish there is a potential obstruction to solving it. It turns out

that for the gauged chiral systems ZA is a function of the currents, and terms proportional

to h∗c∗ can be added to the BV action so that this part of the master equation is satisfied.

Alternatively, the field dependent closure functions can be set to zero using appropriate

terms proportional to X∗h∗.

The closure of the transformations acting on the gauge fields (1.4) involves the JIs,

and when ZA 6= 0 the algebra closes only modulo certain symmetries which act only on

the gauge fields and which reflect the relations between the currents [18, 19]. These will be

called null symmetries. For example, for the SU(3) case the null (BRST) symmetry, (c0 is

a parameter ghost),

shJ = −D(c0L) sh
bL = ic0T sXi = 0 , (4.2)

reflects the relation (3.19):

DJL − iT L̂ ≡ 0 . (4.3)

The gauged chiral action, (1.3), is

S0 + hLL + h
bLL̂ + hT T + hJJ . (4.4)

It is clear that (4.2) is not the unique symmetry implied by (4.3). There are many possi-

bilities, all related by transformations which are graded antisymmetric in the equations of

motion of the gauge fields. The null symmetries, modulo transformations of this type, are

graded symmetric. Therefore they cannot be absorbed by adding terms quadratic in h∗ to

the BV action, and must be introduced as extra symmetries.

Null symmetries are present in any gauged theory with fermions (due to relations

such as T 2 = 0), and normally they should be ignored. In conventional gauge theories

the properness condition3 ensures the existence of a propagator. In the context of string

theory or W-strings the gauge fields are non-propagating, and the propagator for the matter

fields exists even if the solution is not proper. Nevertheless, it makes sense to impose the

3See, for example, section 4.3 in [14] for the definition of properness.
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properness condition modulo null symmetries. The reason is that, if the null symmetries are

incorporated into the theory, we face the problem that they are infinitely reducible. This

fact is easy to demonstrate for null symmetries proportional to the gauge field equations

of motion, but it is also true when they are not of this form [19, 20]. Even more seriously,

it is not clear which null symmetries should be included and which should be ignored. If

we include one, one might suppose that we should include them all, but then the theory

becomes difficult to manage.

When ZA 6= 0 closure forces the introduction of generators for a subset of the possible

null symmetries. In this case it makes sense to relax the properness condition modulo null

symmetries to include this particular subset, but the infinite reducibility still poses a serious

obstruction to understanding the theory [19]. When gauge fields are treated as background

fields a proper solution is not required, and reducibility ghosts need not be introduced.4

In the examples we encounter it is possible to close the algebra after introducing a finite

number of null symmetries. However, even for the non-proper solutions terms increasingly

non-linear in the antifields need to be added to the extended action to solve the master

equation at higher orders, and it is not clear whether a finite number of terms is sufficient.

Null symmetries arise in this manner for many of the special holonomy W-algebras. In

the case of SU(m), using the expressions (2.5) and (2.8) for the T and L currents, one finds

the basic relations (3.17) and (3.19). These are implied abstractly by the JIs only in the

case of SU(3). For SU(4) one obtains many relations which follow from (3.17) and (3.19),

but which involve higher powers of currents. For example, the (L, (L,L)) Poisson bracket

JI implies:

J∂JL ≡ 0 , TD+JL̂ ≡ 0 , D+TJL̂ ≡ 0 , (4.5)

J(T L̂ − D+JL) ≡ 0 .

For SU(m), m ≥ 5, the situation changes. The Poisson bracket JIs now involve high

enough powers of currents so that it becomes possible to absorb the null symmetries by

terms quadratic in h∗. For example, the (L, (L,L)) Poisson bracket JI in SU(5) implies

J3L̂ ≡ 0 . (4.6)

The shJ part of the null symmetry vanishes identically, and therefore the shL part can be

absorbed by adding a term proportional to h∗
Jh∗

L to the BV action. In these cases a proper

solution (modulo null symmetries) to the master equation can be found.

The G2 case is like SU(3), in that the fundamental relations (3.23) are implied by the

Poisson bracket JIs, so there is a correlation between this point and the problems with

linearisation. For the rest of the special holonomy cases the Jacobi identities do not imply

any relations between the generators. That is to say, for Spin(7) and Sp(k) · Sp(1) there

are no problems with the JIs, and one can define the classical W-string BRST operator.

However, due to the problem of background fields transforming into the quantum fields it is

4Because the h
As are non-propagating fields, there is also the option that a non-proper solution would

make some sense even when the h
A are treated as quantum fields. This has not been investigated in the

literature.
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still not possible to calculate potential anomalies in the OPE using standard cohomological

methods; one can only do so at the linearised level. For SU(3) and G2 finite linearisations

are not possible and this makes cohomological analysis of anomalies very difficult.

5. Discussion

We have seen that all the classical special holonomy algebras admit finite linearisations,

except for G2 and SU(3). Thus in all cases except for these we can set up and analyse

potential anomalies using cohomological methods. The simplest case to consider is the

chiral symmetry algebra for flat target space models. The action is

S = S0 + X∗
i sXi + c∗AscA , (5.1)

where the ghosts and their antifields are chiral. The ghost term in the action gets no

quantum corrections and is only introduced to tidy up the algebra. Since the theory

defined by S0 is free it is not affected by anomalies, but there could be anomalies in the

antifield sector related to those of the current algebra.

The next step is to gauge models of this type. The action is

S = S0 + hAjA + X∗
i sXi + c∗AscA + h∗

AshA , (5.2)

where the ghosts are now no longer chiral. Again the last two terms do not receive quantum

corrections. Differentiation of the quantum action twice with respect to the gauge fields

gives the two-point function of the currents. Since the OPE, which is straightforward to

compute in the free theory, introduces the missing Jp and TJp currents in SU(m),m ≥ 4,

it follows that this model will be anomalous in these cases. However, for Spin(7) and

Sp(k) · Sp(1), one would expect that these models would be anomaly-free.

In principle, one could apply the same ideas to the gauged and ungauged interacting

models. However, in practice one has to specify a quantisation procedure. The best is

the background field method which allows one to keep track of the geometrical nature

of the theory [21]. This can be accomplished by introducing a family of fields X(s) which

interpolate between the background field X = X(0) and the total field Xt = X(1). The field

X(s) can be taken to satisfy the geodesic equation, and the quantum field Y is taken to be

the tangent vector to the geodesic at s = 0. The background-quantum split involves a non-

linear shift symmetry [22] which can be shown to be non-anomalous [23]. This symmetry

controls the field dependence of the counterterms and can be understood geometrically in

terms of the first jet bundle of the tangent bundle. Symmetries of the sigma model can give

rise to linear transformations of the quantum field if the symmetry variation commutes with

differentiation with respect to s. The condition for this to be the case is that the symmetry

variation δX(s) should satisfy the equation of geodesic deviation. Unfortunately, this is not

the case for any of the special holonomy symmetry transformations. This implies that the

quantum field has to transform non-linearly. In principle, therefore, in order to undertake a

complete analysis of the anomalies of the interacting special holonomy sigma models in the

background field method one should analyse these non-linear symmetries for graphs with
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both background and quantum external lines since the latter can contribute as subgraphs

in the effective action for background fields.

Although a full analysis would involve the above steps it is nevertheless not unrea-

sonable to look at the potential anomalies of the background field effective action with no

external quantum lines. If one makes a special holonomy transformation of the background

field accompanied by the appropriate transformation of the quantum field the local action

in the path integral is invariant and the change in the quantum field can be absorbed by a

field redefinition in the path integral. Therefore the effective action, defined by

eiΓ[X] =

∫
DY eiS[Xt] , (5.3)

should satisfy a potentially anomalous Ward Identity of the form

W (aL)Γ = ∆(aL) · Γ (5.4)

where aL is the chiral parameter for an L-type symmetry, ∆(aL) is the anomaly, and

W (aL) :=

∫
aLδLXi δ

δXi
. (5.5)

In this situation one has a Wess-Zumino consistency condition of the form

W (aL)∆(aM ) − W (aM )∆(aL) = ∆((L(aL),M(aM ))) . (5.6)

For this approach to be valid the algebra in question must be of the linearised type. It

would be of interest to investigate this consistency condition. One might expect that special

holonomy anomalies would be related to the superconformal anomaly. The above approach

can be extended to the gauged case where one would again expect there to be problems

for the SU(m) case.

In conclusion, we have seen that it is extremely difficult to analyse the anomalies of

special holonomy symmetry W-algebras in the BV framework. It is essential to consider

the (chirally) gauged models since the ghosts cannot be consistently taken to be chiral

themselves. In these models, however, even in the most favourable cases, such as Spin(7)

or Sp(k)·Sp(1), where there are no difficulties due to problems with the Jacobi identity, one

is still faced with the problem that the background gauge fields and ghosts transform into

the quantum fields. It seems that the only way to avoid this problem in the W-framework

is to quantise the gauge fields. Even here, in many cases, one is faced with the problem of

infinite reducibility.

These problems can all be avoided to some extent if one utilises the fact that most of

the classical special holonomy algebras admit finite linearisations. In the background field

method one can then analyse possible anomalies in the effective action with no external

quantum lines using the naive classical Ward identities and consistency conditions. On the

other hand the inclusion of (background) gauge fields can cause problems due to the fact

that the OPE of two currents generates operators which are not in the original set. The

only models free from this problem are the Spin(7) and Sp(k) · Sp(1) models.
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There are only two models, SU(3) and G2, which do not admit finite linearisations.

Technically this is because of the presence of currents in the algebra which then generate

others with more and more derivatives. An interesting observation is that CY algebras

admits closed linear subalgebras generated by {T, J,Ω} or {T, J, Ω̄} where

L = Ω + Ω̄ L̂ = i(Ω − Ω̄) . (5.7)

These can be analysed in all cases including CY3. It is the complex currents Ω which

are related to the squares of the spectral flow operator so it may be that commuting the

spectral flows in two directions is the source of the problem. The analogous subalgebra in

the G2 case is the tri-critical Ising model [5].
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